TEACHING

Training & Workshops
  • June
    2021
    Online

    Python for beginners

    INCF/OCNS Software WG tutorial

    The INCF/OCNS Software Working Group conducted three beginner/intermediate level tutorials at the CNS*2021 Online conference. These covered the command line (Bash), using Git and GitHub, and development in the Python programming language.

    URL: https://ocns.github.io/SoftwareWG/2021/06/09/software-wg-tutorials-at-cns-2021-online-bash-git-and-python.html
  • May
    2021
    Online

    EBRAINS Infrastructure Training on Model Validation

    EBRAINS/HBP, CNRS

    This training guided modellers and experimentalists in model validation (comparing simulation results to experimental data) using the EBRAINS Model Validation Framework. Participants learned how to: develop model-agnostic validation tests adapt existing models so they can be more easily validated use the EBRAINS model and test catalogue register, search, view and compare the results of validation tests The training took place over four days, with two days of presentations and hands-on demos, followed by two days of participants working on their own validation projects with the assistance of the tutors.

    URL: https://www.humanbrainproject.eu/en/education/training-on-model-validation
  • Feb
    2014
    Chandrapur, India

    NEURON workshop for beginners

    IIT Bombay

    Conducted a 3 day workshop on computational modeling at GCOE, Chandrapur, India.
TEACHING ASSISTANTSHIPS
  • 2013
    2015
    Mumbai, India

    BB803 − Advanced Cellular Electrophysiology

    IIT Bombay

    Instructor: Prof. Rohit Manchanda Content: Current-voltage curves for voltage-gated ion channels: generation and analysis. Ca channel I-V curves: Goldman equation. Input resistance: theory, measurement, inferencing. Applications to skeletal and smooth muscle. Extensions of cable theory: predictions of cable equation; finite cables. Electrical models of neurotransmission in neurons, skeletal muscle and smooth muscle. Modelling of synaptic potentials based on impulse response. Special properties of syncytial tissues: input resistance, current-voltage relations, behaviour of synaptic potentials and spikes. Ca dynamics: components of Ca flux. Computational modelling: the compartmental modelling approach. Modelling passive structures, active properties, neurotransmission. Paper discussion. Text/References: Methods in neuronal modeling : from ions to networks; Eds C. Koch, I. Segev. Cambridge : MIT Press 1998. Computational neuroscience : realistic modeling for experimentalists; Ed: De Schutter, E. Boca Raton : CRC Press 2001. Foundations of cellular neurophysiology; Johnston, D., Wu, S. Cambridge : MIT Press, 1995 Cellular biophysics. Weiss, T.F. Cambridge : MIT Press, 1996 The NEURON book. Carnevale, T, Hines MJ. Cambridge : Cambridge University Press 2005
  • 2011
    2013
    Mumbai, India

    BM636 − Bioelectricity

    IIT Bombay

    Instructor: Prof. Rohit Manchanda Content: Action potential of excitable cells: Quantitative description, Hodgkin-Huxley model, significance of parameters in Hodgkin-Huxley equations; Voltage-clamp experiments : design, and analysis of results; Factors determining the initiation, amplitudes, and kinetic properties of action potentials. Passive membrane electrical properties: Cellular resistance, capacitance, time constant and space constant, methods of measurement; Importance in cellular excitation and signaling: Impulse propagation. Electrophysiology of synaptic transmission: Prejunctional and postjunctional electrical events; time courses of transmitter-activated membrane currents and potentials in skeletal and smooth muscle; Electrical models of the skeletal and smooth muscle membranes. Text/References: B. Katz : Nerve, Muscle, and Synapse, Mc-Graw Hill, New York, 1966. J.G. Nicholls, A.R. Martin & B. Wallace : From Neuron to Brain, 3rd ed., Sinauer, Sunderland, 1992. J.J.B. Jack, D. Noble & R.W. Tsien : Electric Current Flow in Excitable Cells, Oxford University Press, 1983. R.D. Barr & R.L. Plonsey : Bioelectricity: A Quantitative Approach, Academic Press, N.Y., 1988. E.R. Kandel & J. Shwartz (ed.) : Principles of Neural Science, 3rd ed., 1991.
  • 2011
    2013
    Mumbai, India

    BM651 − Biopotentials

    IIT Bombay

    Instructor: Prof. Rohit Manchanda Content: Introduction to molecular and cellular Biology; Molecules, membranes and cells; Cell structure and function: organelles, cytoskeleton and plasma membrane; Metabolism and energy cycles; Synthesis of proteins and nucleic acids; Transport across cell membranes and cytoplasm; Cell to cell biochemical signaling: hormones, receptors and synaptic transmission; Cytoskeleton and movement, Actin and Myosin; Energetics of ion pumps. Origin of biopotentials; Resting membrane potential; The resting membrane as a potassium electrode; Nernst potential; Selective permeability and the Donnan equilibrium; Action potentials: ionic basis, properties of generation and conduction, examples in different cell types, relation to surface-recorded signals; Synaptic potentials: passive properties and integration. Text/References: B. Alberts, D. Bray, J. Levis, M. Raff, K. Roberts & J. D. Watson : Molecular Biology of the Cell, Garland Publishing Inc., New York, USA. 1983. J. Darnell, H. Lodish, D. Baltimore : Molecular Cell Biology, Scientific American Books, New York, USA. 1996. D.J. Aidley: The Physiology of Excitable cells, 3rd Ed., Cambridge University Press, 1990. D. M. Prescott : Cells, Jones & Bartlett, Boston, 1988. A. Loewy, et al. : Cell Structure and Function: An Integrated Approach, 3rd Edition, Saunders, Chicago, 1991.
  • 2010
    2013
    Mumbai, India

    BM627 − Virtual Instrumentation

    IIT Bombay

    Instructor: Prof. Soumyo Mukherji Content: Introduction to bioelectric signals. Analog to Digital Conversion and Data Acquisition Cards. Hardware interfacing. Programming in C for Virtual Instrumentation. Building Graphical User interfaces for use in data acquisition. Signal sampling fundamentals for Data Acquisition. Basic signal processing techniques. Acquisition of general waveforms and biosignals. Issues in online monitoring. Web-based online monitoring. Text/References: Biomedical Signal Analysis by RM Rangayan Microcomputer Interfacing by J.J. Carr LabWindows CVI manuals (National Instruments)